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Simulation of the deformation of polymers below their glass transition through molecular dynamics provides
an useful route to correlate their molecular architecture to deformation behavior. However, present computa-
tional capabilities severely restrict the time and length scales that can be simulated when detailed models of
these macromolecules are used. Coarse-graining techniques for macromolecular structures intend to make
bigger and longer simulations possible by grouping atoms into superatoms and devising ways of determining
reasonable force fields for the superatoms in a manner that retains essential macromolecular features relevant
to the process under study but jettisons unnecessary details. In this work we systematically develop a coarse-
graining scheme aimed at simulating uniaxial stress-strain behavior of polymers below their glass transition.
The scheme involves a two step process of obtaining the coarse grained force field parameters above glass
transition. This seems to be enough to obtain “faithful” stress-strain responses after quenching to below the
glass transition temperature. We apply the scheme developed to a commercially important polymer polysty-
rene, derive its complete force field parameters and thus demonstrate the effectiveness of the technique.
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I. INTRODUCTION

Predicting macroscopic properties of a polymer starting
from a description of its molecular architecture is a long
standing scientific goal. The problem however, involves a
large variety of length and time scales. The range of length
scales span a wide spectrum from 0.1 nm which is a typical
bond length, to the scale at which typical mechanical tests
are conducted, i.e., tens of millimeters. Kuhn lengths for
typical polymers are of the order of 1 nm for randomly
coiled chains and typical radii of gyration of polymer chains
at realistic molecular weights are of the order of 10 nm. Time
scales too range from 1 fs, the vibration time period for
individual bonds to several seconds, the typical relaxation
times for commercial polymers. The fact that the structure
and dynamics is governed by such a wide spectrum of time
and length scales makes multiscale simulation of these ma-
terials especially difficult �1�.

Atomistically detailed simulations with a view to obtain
macroscopic and in particular, mechanical properties of mac-
romolecular systems have been conducted by several re-
searchers. These include, among others, simulations of
stress-strain response of glassy polymers by Brown and
Clarke �2�, Ogura and Yamamoto �3�, Capaldi et al. �4�,
Yashiro et al. �5�, Negi and Basu �6�, and Lyulin et al. �7�;
viscoelastic properties by Weiner and Gao �8�; adhesive
properties by Stevens �9�, Rottler and Robbins �10�, and
Kulmi and Basu �11�.

The simulation studies mentioned above use force field
models of basically two types. A large body of literature
exists on polyethylene �PE�-like models where a “united
atom” represents a -CH2- unit, each of which interacts with
bond stretching, bending, and torsion potentials with four of
its bonded neighbors and through the Lenard Jones �LJ� po-

tential with the rest. The parameters for the force fields are
obtained from ab initio calculations on n-butane as in typical
calculations by Steele �12�. Similar models obtained by ab-
sorbing the hydrogens into united atoms have been proposed
for more complicated molecules like polystyrene �13� and
used in molecular dynamics �MD� studies to predict me-
chanical properties by Lyulin et al. �7�.

On the other hand, coarse grained simulations involve
“beads” that are larger than -CH2- units in size and interact
through a force field which is generally taken to be a com-
bination of a finite extensible nonlinear elastic �FENE� po-
tential between adjacent bonds and a truncated and shifted LJ
potential. Simulations are often conducted using Lenard
Jones units, where the LJ constants are used as reference
length and energy scales. Simulations conducted through
both routes provide insights into the deformation behavior of
these materials. However, unless an equivalence is estab-
lished between the force field parameters used in united atom
and coarse grained �CG� simulation, quantitative comparison
of physical quantities obtained from the two methods is dif-
ficult.

We illustrate the above point using the example of PE, the
simplest linear chain polymer. United atom models of PE use
a force field where the total energy of the system is given by

EUA = � Vstretch + � Vbend + � Vtor + � VvdW, �1�

as in Mahajan and Basu �14�, where the summations run over
all bonds of the particular kind. The van der Waals interac-
tions are calculated over pair of atoms not connected by
stretching, bending and torsional potentials. A realistic char-
acterization of the force field for PE assumes �Fukuda and
Kuwajima �15��:

Vstretch =
1

2
ks�r − r0�2, �2�

where r0=1.53 Å and ks=2745 kJ / �mol Å2�,*sbasu@iitk.ac.in; http://home.iitk.ac.in/~sbasu

PHYSICAL REVIEW E 81, 011803 �2010�

1539-3755/2010/81�1�/011803�11� ©2010 The American Physical Society011803-1

http://dx.doi.org/10.1103/PhysRevE.81.011803


Vbend =
1

2
k��cos��� − cos��0��2, �3�

where k�=749 kJ /mol and �0=113.3°,

Vtor =
1

2
A1�1 + cos���� +

1

2
A2�1 − cos�2���

+
1

2
A3�1 + cos�3��� , �4�

where A1=7.86, A2=−4.36, and A3=15.56 kJ /mol,

VvdW = 4����

r
�12

− ��

r
�6	 . �5�

where �=4.06 Å and �=0.36 kJ /mol.
In the above, r denotes the distance between two united

atoms while � and � are the bond and dihedral angles be-
tween three and four consecutive united atoms in a chain.

A coarse grained model on the other hand assumes that
adjacent beads interact through the FENE potential as

UFENE = 
−
Ro

2k

2
ln�1 − �r/Ro�2� r � Ro

� r � Ro
� ,

while all bead pairs interact through the truncated and shifted
LJ potential as

ULJ = 
4uo��a

r
�12

− �a

r
�6

+ 1/4	 r � rc

0 r � rc
� ,

where rc=1.5a is the potential cut-off radius �Hoy and Rob-
bins �16��. Thus uo becomes a basic unit of energy and “a”
an unit of length. Further, bending and torsional potentials

may be added to further stiffen the chain �Bulacu and van
der Giessen �17��. Kroger �18�, comparing the experimental
end to end distance of PE chains at temperature of 443 K
with CG simulations suggest that uo=3.68 kJ /mol and a
=5.23 Å. Moreover, the mass of a CG bead is 42.3 g/mol,
suggesting that a CG bead is equivalent to about three united
atoms.

Based on the above equivalence between the CG and
united atom force fields for PE, we have compared key pre-
dictions of mechanical properties obtained from them. The
comparison is presented in Table I. Clearly, key quantities
defining the mechanical behavior for the materials, namely
the glass transition temperature Tg, yield stress 	o and the
Young’s modulus E are widely different for the two cases
�9th, 12th, and 14th rows in Table. I�. This discrepancy
points to the need for establishing a closer equivalence be-
tween the force field parameters of CG and a united atom
model.

The objective of the work is to attempt a related and
somewhat more realistic approach to establishing an equiva-
lence between united atom and CG force fields. To this end,
we attempt to coarse grain a somewhat more complicated
polymer, polystyrene �PS�, such that groups of atoms in one
or more monomers constituting it are systematically mapped
onto superatoms, thus reducing significantly the total number
of degrees of freedom that need to be accounted for. If effi-
cient strategies for quantifying the interaction between the
superatoms can be devised, the process can probably be au-
tomated and more importantly, lead to very significant im-
provements in the time and length scales accessible to MD
simulations performed with the coarse grained systems over
detailed models. Examples of such attempts to coarse grain
particular systems include those by Tschop et al. �19�,
Akkermans and Briels �20�, Baschnagel et al. �21�,
Muller-Plathe �22�, and the works by Faller and co-workers,
especially Sun and Faller �23�. The coarse-grained macro-

TABLE I. CG model equivalence with united atom model of PE.

Quantity Units CG �LJ� CG �LJ�⇒PE �REAL� PE �REAL�

LJ Real Hoy&Robbinsa Krögerb Mahajan and Basuc

a � Å 1 5.23 4.06

uo � kJ
mol 1 3.68 0.36

mass m g
mol 1 42.3 14

rc � Å 1.5 7.8 6

Ro � Å 1.5 7.8

Time step 
LJ ps 0.007–0.012 0.01–0.02 0.002

Tg
�
kb

K 0.35 155 230–260

Ṫ �
kb
LJ

K
ps −2�10−3 −0.5 1.5–0.15

Density m

�3
g

cm3 1 0.49 0.83–0.86

	o
�

�3 MPa 1 42.7 210

�̇ 
LJ
−1 ps−1 �−10−4 �−10−4 �−10−4

E �

�3 MPa 15.15 641 2000

aReference �16�.
bReference �18�.
cReference �14�.
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molecules are basically linear chains comprised of supera-
toms interacting through the derived force fields. Ensembles
of such chains can then be used in MD simulations with a
view to obtaining useful mechanical or other properties. The
properties thus derived are essentially “parameter free,” “first
principle” estimates.

In the present work our objective is to build and validate
a coarse-grained model for PS that is capable of predicting
its stress-strain behavior in the glassy state. Polystyrene is a
commercially important polymer that exhibits substantial
strain softening right after yield �also called a “yield drop”�
and moderate strain hardening at large strains �24�. As a
consequence, the localization of deformation and the growth
of these localized shear bands in polystyrene is significantly
different from other commercially important polymers like
polycarbonate which have shallower yield drops but harden
strongly at high strains �25�. Lyulin et al. �7� report a simu-
lation of stress-strain behavior of both polystyrene and poly-
carbonate that brings out the difference in their strain soften-
ing behavior. These simulations use united atom force fields
with rather short and few chains. Evidently, an effectively
coarse-grained model of polystyrene will allow us to simu-
late much bigger systems.

An interesting development in this direction has been
made by Harmandaris and co-workers �26–30�. Harmandaris
et al. �29� has performed coarse-graining of polystyrene us-
ing two superatoms to represent a monomer of PS. They
calibrated the various bond stretching, bending, and dihedral
potentials of the coarse-grained model meticulously closely
following a procedure that Tschop et al. �19� used for coarse
graining polycarbonate. In this method, the nonbonded force
field is calibrated very accurately while the nonbonded po-
tential �which strongly controls the deformation behavior in
the glassy state� is calibrated by, simulating two isolated
toluene molecules at various separations, averaging their in-
teraction energies with respect to all orientations and finally
fitting a shifted Lenard Jones potential to the mean-force
potential. The calibrated coarse grained force field was used
by Mulder et al. �27� to generate stress-strain curves for PS
in the glassy state.

Molecular dynamics based stress-strain simulations on
glassy polymers are typically done on samples which are
prepared at high temperatures and then quenched to the
glassy state before being deformed. The calibration of the
coarse-grained parameters is performed at the high tempera-
ture. The coarse-grained model, by design, maintains close
equivalence to the corresponding detailed model at the high
temperature. Typically, at this temperature, radial distribution
functions, structure factors, etc. in the coarse grained system
match closely with those of the corresponding detailed sys-
tem.

However, as has been pointed out by Milano et al. �31�,
the pressure in the coarse-grained model generally does not
match that in the detailed model �they proposed to add a
weak linear potential to the attractive part of the coarse-
grained nonbonded potential to correct for the pressure�.
Mismatch in pressure at the high temperature implies that the
stress after quenching to the glassy state also is different
from a detailed sample. Thus a detailed sample equilibrated
at above Tg, quenched to a glassy state and deformed uniaxi-

ally, in general, will have a different stress-strain response
compared to its coarse grained counterpart quenched and de-
formed in the same way. This, in our view, is a major bottle-
neck in coarse graining macromolecules with a view to ob-
taining their stress-strain behavior in the glassy state. We will
show that coarse-graining followed by a pressure correction
at the high temperature alleviates this problem to some ex-
tent.

The structure of a small part of the polystyrene chain is
shown in Fig. 1�a� along with the optimized all atom struc-
ture of a monomer and its united atom representation. The
optimized structure of a PS monomer is well known, an
united atom force field is available in Mondello et al. �13�
and is briefly described in the next section. In the coarse
graining strategy to be adopted here, we will start by taking
one superatom per monomer with a mass of 104 amu. So, a
macromolecular PS chain, as shown in Fig. 1�b�, in the
coarse-grained representation is a linear chain of superatoms
that are bonded by bond stretching and bending potentials.
Moreover, superatoms that do not interact through bonded
potentials do so through a nonbonded LJ potential. The basic
aim of the coarse-graining �CG� scheme is to calibrate the
bonded and nonbonded potentials with a view to matching
some physical property of the system, in this case, the stress-
strain response in the glassy state.

Several techniques are available for calibrating the CG
force field in the literature �19,22,23,32�. Typically, to cali-
brate the bonded force fields, ab initio calculations are con-
ducted on monomers or parts thereof �19�. Moreover, a two-
body force field is chosen for the nonbonded interactions and
its parameters are fitted by demanding that the radial distri-
bution function �rdf� obtained from a small detailed sample
match that from a coarse grained one �22,23�. Standard op-

J K

Atomic mass = 104 amu

�JIK

M
IL

�LJI �IKM

(b)

(a)

FIG. 1. �a� Chemical structure of the PS molecule along with the
optimum structure of its all atom and united atom monomers; �b�
Schematic representation of coarse grained PS.
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timization techniques are used to converge on the detailed
rdf by iteratively adjusting the parameters in the nonbonded
force field.

A somewhat different procedure �32–34� that has been
used for coarse-graining biomolecules involves demanding
that all other simulation conditions remaining same, the net
force on the group of atoms constituting a superatom in the
united atom representation should equal the force on the su-
peratom itself in the CG representation. Note that the force
on the superatom in the CG system comes from bonded as
well as nonbonded interactions. Izvekov et al. �32,34� have
demonstrated that for certain biomolecules, this “force
matching” technique yields a close match to the rdf between
the detailed and CG systems. We adopt this technique as a
starting point for our coarse graining scheme. Unlike in Mul-
der et al. �26–28�, we perform a 1:1 coarse graining, i.e.,
each monomer of PS is represented by one superatom in the
coarse-grained system. Moreover, our method puts bonded
and nonbonded parameters on equal footing and though we
do not target to match the rdf exactly, a reasonable match is
obtained. Also, following the CG procedure a pressure match
is performed.

This paper is organized in the following manner. In the
next section we briefly describe the united atom force field
for PS that we have adopted from Mondello et al. �13�. A
sample of PS prepared and equilibrated with this united atom
force field will be called a “detailed sample” in this paper.
The algorithm for the force matching technique that we have
used for calibrating both bonded and nonbonded force fields
is presented in Sec. III In the Sec. IV we present the cali-
brated parameters for coarse-grained polystyrene and show
that the quality of coarse-graining is equivalent to other tech-
niques. We turn to the simulation of the stress-strain response
of polystyrene in Sec. V and discuss additional modifications
to the CG scheme that is required for obtaining a set of CG
parameters that reproduce the stress-strain response satisfac-
torily. Salient conclusions from this work are presented in
Sec. VI

In this work we will use lower case Roman and Greek
alphabets to denote quantities pertaining to the detailed
united atom system and upper case ones for the coarse
grained system.

II. DETAILED FORCE FIELDS FOR POLYSTYRENE

The detailed force field for polystyrene is adopted from
Mondello et al. �13� and is briefly described here. The num-
bering refers to Fig. 2 which shows two consecutive polysty-
rene monomers. As mentioned earlier, in this united atom
representation, the hydrogen atoms are not explicitly ac-
counted for and are clubbed into the bonded carbon. In Fig.
2, the atoms numbered 1–6 �also 9–14 in the second mono-
mer� are aromatic carbons while 7 and 8 �also 15 and 16 in
the second monomer� are aliphatic. Bond lengths are main-
tained constant at

1.53 Å between two aliphatic carbons �e.g., between at-
oms 8–7 or 7–16�,

1.51 Å between an aliphatic and an aromatic carbon �e.g.,
between atoms 7 and 1�,

1.40 Å between two aromatic carbons �e.g., between at-
oms 14 and 13�,

using the SHAKE algorithm �35� with a tolerance of
0.0004 Å.

The bond angle potential for a generic bond angle � in the
united atom model is of the form

v� = k��� − �0�2, �6�

where �0 is the equilibrium value of the bond angle and k� is
the stiffness. The values of k� and �0 are defined as follows

k�,�0 = 60 kcal/mol, 109.5 ° for aliphatic CH2-CH-CH2,

�e.g., between atoms 8 – 7 – 16� ,

63 kcal/mol, 109.5 ° for aliphatic CH-CH2-CH,

�e.g., between atoms 7 – 16 – 15� ,

60 kcal/mol, 109.5 ° for CH2�aliph�-CH�aliph�-C�arom� ,

�e.g., between atoms 8 – 7 – 1�, and

70 kcal/mol, 120.0 ° for CH�aliph�-C�arom�-CH�arom� ,

�e.g., between atoms 7 – 1 – 6� .

Similarly, the torsion angle potential for a generic dihedral
angle � is of the form

v� = k��1 − cos 3�� , �7�

governing rotation of a dangling phenyl ring around
the main chain i.e., for torsion between
X-CH aliphatic-CH2 aliphatic-X �e.g., between atoms 8–7–
16–15�. The stiffness k�=1.4 kcal /mol and a minima of the
potential occurs at 120°. On the other hand, the torsion po-
tential governing rotation of a phenyl ring about an axispass-
ing through say, 15–9–12 �i.e., about a CH aliphatic �C
aromatic bond, e.g., between atoms 24–15–9–14� is given by

� �

�

�
�

�

����

��

��	


��	


�

�

�
��

13

12

��

�	

��	


��
�


FIG. 2. United atom model of PS with labeled atoms to facilitate
description of the detailed force field.
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v� = k� cos2�� − �0� , �8�

where, k�=2 kcal /mol and �0=90°.
Nonbonded interactions are modeled using Lenard Jones

potentials of the form

vnb = ����/r�12 − 2��/r�6� . �9�

The parameters in the LJ potential are defined for the differ-
ent interactions as

�,� = 0.12 kcal/mol, 4.321 Å for aliphatic CH2,

=0.09 kcal/mol, 4.153 Å for aliphatic CH, and,

=0.12 kcal/mol, 4.153 Å for aromatic C and CH.

Interactions between different species of nonbonded atoms
are handled using the geometric mean of the individual �
values and arithmetic mean of the � values.

A few modifications to the original model have been
made here. First, the tetrahedral arrangement between atoms
say, 7–16–8–1 or 15–24–16–9 has been maintained by as-
signing a harmonic improper dihedral potential of the form

v� =
1

2
k�� �� − �0�2, �10�

with k�� =100 kcal /mol and �0=36°. Second, each phenyl
ring is kept confined to its plane by the use of rigid pseudo-
bonds between its vertices �e.g., between atoms 1–4, 2–5,
and 3–6�. Periodic boundary conditions �pbc� are used in all
simulations reported in this work.

Using the force field described above, a detailed sample
containing 14 PS chains with 80 monomers per chain was
first equilibrated at 500 K. The equilibration was performed
at a pressure of 0.1 MPa, at which the sample attained a
density of 0.8 g /cm3, close to the experimentally observed
density of PS. In order to obtain a glassy sample, the united
atom sample at 500 K was quenched under constant pres-
sure, at a moderate rate of 1 K/Ps, to 100 K. The variation of
the specific volume of the sample v f with temperature T is
shown in Fig. 3�a�. Straight lines fitted to the high and low
temperature data intersect at Tg355 K indicating that at
100 K, where we perform the subsequent uniaxial deforma-
tions, the sample is well in the glassy regime. The exact
value of Tg obtained from MD simulations depends largely

on the cooling rate Ṫ and pressure and weakly on the ther-
mostat and barostat constants used. It is also somewhat af-
fected by the process of fitting two straight lines to the high
and low-temperature data and the determination of Tg from
their intersection. Thus, a large variation is expected in Tg
values obtained by different authors. In fact, Lyulin et al. �7�
report a value of 385 K at a Ṫ=0.05 K /ps, obtained using
different thermostat and barostat constants. Faller �36� re-
ports a value of about 320 K while Santangelo and Roland
�37� show that the value of Tg depends strongly on the mo-
lecular weight till a chain length of about 200 monomers/

chain. We chose a glassy temperature of 100 K in order to be
sure that we are well below the glass transition temperature
even after taking all the uncertainties in the determination of
Tg into consideration.

The variation in the z−z component of the virial stress �
with the overall imposed engineering strain  for the same
sample at 100 K is shown in Fig. 3�b�. The sample is de-
formed in an incompressible manner by increasing one of the
cell vectors at a constant rate of 0.296 Å /ps which corre-
sponds to an engineering strain rate ̇ of approximately
0.005 ps−1. Along the other two directions �i.e., x and y�,
equal compressive strains are applied at a rate that keeps the
volume of the entire simulation box constant. The stress-
strain response exhibits an initial elastic part, a drop follow-
ing yield at about 105 MPa, and finally a moderate hardening
response at high strains. The Young’s modulus, measured
from the stress-strain curve is about 3.6 GPa. This is compa-
rable to the value of 2.9 GPa obtained by Lyulin et al. �7� at
̇�10−4 ps−1. The behavior is qualitatively similar to what
is experimentally observed for PS. This stress-strain response
obtained from the detailed sample will be the benchmark that
CG simulations will have to follow. Undeformed and de-
formed configurations of the simulation box for the detailed
force field are also shown at the marked points on the stress-
strain curve.

0 50 100 150 200 250 300 350 400 450 500
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υ
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FIG. 3. �Color online� �a� Variation in the specific volume v f

with temperature for the united atom PS sample cooled from 500 to

100 K at Ṫ=1 K /ps. �b� Stress-strain response of the detailed
sample at 100 K pulled in incompressible tension at a rate of
0.005 ps−1. Deformed configurations at the strain marked by square
symbols are superposed.
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III. COARSE-GRAINING PROCEDURE:
THE FORCE MATCHING TECHNIQUE

A superatom I in our case is one whole monomer of PS.
The superatom is placed at RI, the mass center of the mono-
mer, i.e.,

RI = �
i=1

p

miri/�
i=1

p

mi, �11�

where p is the number of united atoms in a monomer.
We want the force on superatom I to be the vector sum of

the forces fi acting on the p united atoms constituting it, i.e.,

FI
ref = �

i=1

p

fi. �12�

As in Izvekov et al. �32�, we define an objective function,

� =
1

3LN
�
L=1

M

�
I=1

N

�FI,L
ref − FI,L�2, �13�

where N is the total number of superatoms in the system and
� · �I,L denotes a physical quantity on superatom I in the L-th
configuration. The function � involves an average over all
the superatoms in all the configurations on which the force
matching is to be done. With the understanding that � is
constructed as an average over many configurations of the
same system �e.g., a number of snapshots taken along a NVT
run�, we will drop the subscript L in subsequent equations.
The objective then is to find FI such that � is a minimum.

The force FI acting on superatom I is assumed to result
from inter and intrachain central pairwise nonbonded forces
as well as harmonic bond stretching and bending forces with
intrachain neighbors. The nonbonded force on superatom I is
of the form

FI
nb = �

K=1

Nnb

F�RIK�R̂IK, �14�

where, the summation is taken over the Nnb, nonbonded
neighbors of atom I. The distance vector is given as RIK

=RI−RK, while the unit vector along it is denoted by R̂IK
=RIK /RIK, where for any vector RIJ= �RIJ�.

Along with the nonbonded CG force field, we also deter-
mine the bonded CG force fields through the force matching
technique. Thus, the bonded forces also contribute to the
force FI. Bond stretching force on atom I due to an atom J
bonded to it is given by the equation,

FIJ = −
1

RIJ
� �

�RIJ
Us�RIJ�	RIJ, �15�

where the bond stretching potential Us�RIJ� between two su-
peratoms I and J is taken to be harmonic of the form:

Us�RIJ� =
1

2
Ks�RIJ − R0�2. �16�

The equilibrium bond distance R0 and the stiffness Ks are yet
undetermined.

Using the labeling of atoms used in Fig. 1�b�, the net bond
stretching force FI

s on superatom I is the vector summation
of the forces due to neighboring superatoms J and K and is
given as:

FI
s = − Ks�RIJ − R0�R̂IJ − Ks�RIK − R0�R̂IK. �17�

An alternate way of writing the above equation that will be
useful later is as follows:

FI
s = ��− RIJR̂IJ − RIKR̂IK� �R̂IJ + R̂IK� �� Ks

KsR0
�

= SI� Ks

KsR0
� . �18�

In the above, SI is a 3�2 matrix embodying the contribution
due to bond stretching forces for Ith superatom using Ks and
KsR0 as the parameters to be determined while minimizing
�.

A similar procedure may be adopted to determine the
force due to bond bending on superatom I and FI

b. To this
end, we again assume a harmonic bond bending potential for
a generic bond angle �JIK �see, Fig. 1�b��

Ub��JIK,RIJ,RIK� =
1

2
K���JIK − �0�2, �19�

where, as for the bond stretching, K� and the equilibrium
bond angle �0 are yet undetermined parameters. The force
on superatom I due to changes in the bond angle �JIK is
given by:

FI
b = −

�

�RI
Ub��JIK,RIJ,RIK� . �20�

As shown in Fig. 1�b�, the force on superatom I due to bond
bending is due to the bond angles �LJI, �JIK, and �IKM.
Thus, the force FI

b can be written as,

FI
b = �C1�LJIR̂1 + C2�JIKR̂2 + C3�IKMR̂3

− C1R̂1 − C2R̂2 − C3R̂3 �� K�

K��0
� = BI� K�

K��0
� ,

�21�

where, such as SI and BI is a 3�2 matrix embodying the
contribution to the force on superatom I due to bond bend-
ing, C1, C2, and C3 are constants and the minimization pro-
cess of � is expected to yield values of K� and K��0.

Finally, the method due to Izvekov et al. �32� is closely
followed to parametrize the nonbonded potential. As de-
scribed in Eq. �14�, the key ingredient in the nonbonded
force field is the function F�R�. At this stage, we do not
assume a functional form for F�R�. The range of R �Rmin
�R�Rc, where Rc is the cut-off distance for the nonbonded
forces� is divided into a large number of points, P, spaced
�R apart. In the kth interval where, Rk�R�Rk+1, the func-
tion F�R� is approximated by a piecewise cubic polynomial
function as,
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F�R� = Ak + BkR + CkR
2 + DkR

3, Rk � R � Rk+1, �22�

where, Ak, Bk, Ck, and Dk denote coefficients of the polyno-
mial. The function F�R� can be reparametrized in terms of its
functional values Fk, Fk+1 and the second derivatives, Fk� and
Fk+1� at the kth and �k+1�th points. It can be shown that the
reparametrized form of F�R� is given by,

F�R� = ak�R,R1, . . . ,RP�Fk + bk�R,R1, . . . ,RP�Fk+1

+ ck�R,R1, . . . ,RP�Fk� + dk�R,R1, . . . ,RP�Fk+1� ,

Rk � R � Rk+1, �23�

where,

ak =
�Rk+1 − R�
�Rk+1 − Rk�

,

bk =
�R − Rk�

�Rk+1 − Rk�
,

ck =
�2RkRk+1

2 − Rk
2Rk+1�

6�Rk+1 − Rk�
+

�Rk
2 − 2RkRk+1 − 2Rk+1

2 �
6�Rk+1 − Rk�

R

+
Rk+1

2�Rk+1 − Rk�
R2 −

1

6�Rk+1 − Rk�
R3,

dk =
�RkRk+1

2 − 2Rk+1Rk
2�

6�Rk+1 − Rk�
+

�2Rk
2 + 2RkRk+1 − Rk+1

2 �
6�Rk+1 − Rk�

R

−
Rk

2�Rk+1 − Rk�
R2 +

1

6�Rk+1 − Rk�
R3.

Thus, for Rk�R�Rk+1 we can write

F�R� = �0 0 . . . ak ck bk dk . . . 0 0 �

⎩
⎪
⎨
⎪
⎧

F1

F1�

F2

F2�

]

Fk

Fk�

Fk+1

Fk+1�

]

FP−1

FP−1�

FP

FP� ⎭
⎪
⎬
⎪
⎫

= AkD . �24�

Here on the right hand side Ak is a 1� �2P+2� matrix for the
kth interval and D is a vector containing the nodal values of
F�R� and their second derivatives. Thus, if two nonbonded
superatoms I and J are separated by a distance, RIJ, where

Rk�RIJ�Rk+1, the force on superatom I due to J following
Eq. �14�, is

FIJ = AkD
RIJ

RIJ
, �25�

where, Ak�RIJ /RIJ� is a 3� �2P+2� system.
Finally, after performing this procedure for all superatoms

of a configuration and minimizing the objective function in
Eq. �13� we get,

�A S B �

D

Ks

KsR0

Kb

Kb�0

� = �Fref� = �K��X� , �26�

where the finally assembled matrix K is a 3N� �2P+6� ma-
trix, X and Fref are �2P+6��1 and 3N�1 vectors, respec-
tively. The matrix K is rectangular and so the system can
only be solved in a least square sense. For our purpose, we
use, singular value decomposition of K to obtain its pseudo-
inverse, which when multiplied with Fref gives the least
square solution X. After the solution is obtained, the equilib-
rium values of bond length and bond angle, R0 and �0 as
well as the variation of F�R� with R is easily obtained. The
process is repeated over many configurations and the final
coarse grained potentials are obtained by averaging the pa-
rameters over all the configurations used.

The efficacy of the method outlined depends on a number
of factors. The force matching method entails the pseudo
inversion of K, which is a 3N� �2P+6� matrix where in
general 3N� �2P+6�. We have observed that a large value of
P is needed to obtain a piecewise low order polynomial ap-
proximation to F�R� �we have used a cubic polynomial and
using an even lower order polynomial will need a much
larger P�. The appropriate value of P also depends on the
number of zero crossings of F�R� and as a result will need to
be chosen carefully in each case. In our case, we chose P
=50 which gives a satisfactory nonbonded CG potential for
PS.

IV. FORCE MATCHING TECHNIQUE FOR PS

Figure 4�a� shows the function F�R� derived from the
force matching technique for PS. The function is truncated
for R� =5 Å since there were too few or no superatoms
separated by less than 5 Å. The force between two supera-
toms become almost zero beyond 10 Å, which then is a
natural cut-off distance for the CG system. Figure 4�b� shows
the nonbonded potential U�R� obtained by integrating the
force field. Nonbonded separations below 5 Å are inacces-
sible to superatoms and therefore we have added a steep wall
on the potential at 5 Å. The potential has a pronounced
minima at around 7.5 Å.

Parameters for the bond stretching and bending potentials
are also obtained from the minimization procedure. For the
specific case of united atom PS, the obtained values are Ks
=4.5 kcal /mol−Å2 and Kb=8.827 kcal /mol while R0
=5 Å and �0=122.7°.
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Using the CG force field obtained from the force match-
ing technique, we have equilibrated a CG ensemble at 500 K
that was obtained from the united atom PS described earlier.
The CG sample at the onset of the equilibration process is
constructed on the same detailed PS sample �at 500 K� as
described in the last section, with the superatoms being
placed at the mass centers of each monomer of the united
atom model. Thus the CG system also consists of 14 CG
chains with 80 superatoms, each having a mass of 104 amu.

To assess whether the CG bonded force field parameters
are reasonable, we also used an alternate technique to obtain
them. Here, we again used the same detailed sample de-
scribed in the previous section and extracted the probability
distributions Ps��R� and Pb���� of the CG bond lengths and
angles, respectively. The scaled probabilities Ps�R� and
Pb��� for the bond lengths and angles, respectively, are ob-
tained from the probability distributions Ps��R� and Pb���� as

Ps�R� �
Ps��R�

R2 ,

Pb��� �
Pb����
sin �

.

Further assuming that the CG bonded potential factorizes,
i.e.,

U�R,�� = Us�R�Ub��� , �27�

allows us to write the coarse grained potentials by Boltz-
mann inversion as

Us�R� = − kBT ln Ps�R� ,

Ub��� = − kBT ln Pb��� .

where kB is the Boltzmann constant. For example, the prob-
ability and potential for bond stretching obtained by this
method are shown in Figs. 5�a� and 5�b� along with the fits to
the inverted potentials using Eq. �16�. The minima of the
bond stretching potential lies at 4.65 Å compared to 5 Å for
the force matched case. For the bond bending potential too,
the equilibrium bond angle turns out to be 120° compared to
122.7° obtained by the force matching method.

Further, we compared the nonbonded part of the rdf gnb
obtained from the detailed united atom simulation with that
obtained from the CG sample equilibrated using the force
field from the force matching technique. Note that many
coarse-graining schemes use the nonbonded part of the rdf
obtained from the detailed sample as the starting point for
optimizing the parameters of the nonbonded force field �23�.
In our case, as shown in Fig. 6, even though our method
exercises no control on the rdf, the nonbonded rdf for the
detailed sample is matched remarkably well by the CG
sample.
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FIG. 4. The �a� nonbonded force and �b� potential U�R� for the
equivalent CG polystyrene obtained by the force matching
technique.
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V. STRESS-STRAIN RESPONSE OF CG SAMPLES

It is in place here to reiterate the aim of this work. We
intend to formulate a CG force field for PS that reproduces
the stress-strain response of a detailed united atom sample of
the same material. The coarse-graining, it should be noted, is
done at a higher temperature. Both the coarse-grained and
the detailed samples are then quenched to below Tg and im-
parted the requisite deformation.

Even at higher temperatures, after the CG force field has
been obtained, a major problem remains. The CG sample, at
500 K, does not have the same level of pressure �volume� as
the detailed sample when held in a NVT �NPT� ensemble. In
fact, to be held at the same volume and temperature, the CG
sample requires an almost 15 times larger pressure compared
to its detailed counterpart. The atomic virial, that enters the
evaluation of the pressure, in the CG sample, is much lower
compared to the detailed sample since the intramonomeric
contribution to the virial is completely lost during the coarse
graining procedure. Obviously, a match in the stresses cannot
be expected with such a huge mismatch in the pressure.

At this point, we choose to further iteratively refine the
nonbonded force field at 500 K with a view to equalizing the
pressure in the CG and detailed samples. The strategy fol-
lows assuming a parametric form of the nonbonded force
field �much in the spirit of Sun and Faller �23� and Muller-
Plathe �22�� whose parameters are to be obtained so as to
minimize the squared difference �p between the block aver-
aged pressures obtained from the detailed and CG samples in
a long NVT run at 500 K. Thus we minimize

�2 = �
i=1

Nblock

�pi
2, �28�

where Nblock is the number of blocks into which the data is
divided using a block size of 20 time data points. The initial
guess for the parameters comes from the nonbonded force
field that we have obtained from the force matching tech-
nique.

To start with, we assume that the nonbonded force field
has the form of an LJ potential, i.e.,

Unb�R� = 4U0���0

R
�12

− ��0

R
�6	 ,

which, when fitted to the force field in Fig. 4�b�, yields the
initial guess parameters �0=6.4 Å and U0= .081 kcal /mol.
Following Faller and co-workers �38� we use the Nelder-
Mead simplex algorithm �39� to optimize U0 and �0 till the
CG and the detailed samples require the same level of pres-
sure to be held in a NVT ensemble at a given temperature
and volume. A simplex scheme is useful in this case as it
requires, for the minimization of �2, only evaluations of the
functional values and not its derivatives. Figure 7�a� and 7�b�
shows the variation in pressure in a CG and a detailed
sample held at the same volume and 500 K at the end of the
force matching process and after the simplex algorithm has
converged. The final nonbonded force field parameters are
�0=6.4 Å and U0=1.609 kcal /mol indicating that the sim-
plex optimization leaves the �0 unchanged. This is also re-
flected in Fig. 8 where we compare the nonbonded parts of
the rdf between the detailed and the simplex optimized
sample. The location of the peak in the rdf is retained at R
=�0. However, the height of the first peak is enhanced due to
the pressure correction. Note that matching the rdfs does not
guarantee closeness of pressure or stress between the detailed
and CG samples.

At this juncture, we have a detailed and a CG sample at
500 K that have similar rdfs and closely matched pressure.
The CG sample is now quenched at a rate of 1 K/ps, under-
goes glass transition at Tg268 K and is deformed in the
same manner as the detailed sample �see Sec. II� at 100 K.
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The stress-strain responses of the detailed and the quenched
CG samples are shown in Fig. 9. Note that after quenching,
there is no guarantee that the densities of the CG and detailed
samples are identical and our simulations with PS show that
there is indeed a slight difference. Both the CG and the de-
tailed systems contain 14 chains with 80 monomers/chain,
respectively. Thus the CG system has eight times less atoms
than the detailed sample. But, the stress-strain curve obtained
for the CG sample is very close to that obtained by the de-
tailed sample.

The noise in the stress-strain curve is typical of small
samples. We also generated a larger CG sample with 200
chains of 80 monomers/chain and used the derived force
field to equilibrate it at high temperature. The stress-strain
curve obtained for this sample, also shown in Fig. 9, still
follows that of the detailed sample closely but is devoid of
the noise.

VI. CONCLUSIONS

Molecular dynamics simulations of stress-strain response
of amorphous polymers are conducted at temperatures well
below their glass transition. Using detailed models of these
materials, given the present computational resources, se-
verely restricts the length and time scales of samples that can
be simulated. We have outlined a systematic coarse-graining
procedure where we start with identifying each monomer of

polystyrene with one CG superatom, thus effecting a eight-
fold decrease in computational requirement.

The force matching technique is adopted for coarse-
graining detailed PS at a high temperature. We have demon-
strated that bonded potentials obtained through this tech-
nique are comparable to those obtained by other methods.
The nonbonded force field is also estimated well, which is
proved by the fact that the coarse grained, nonbonded part of
the rdf approximates the one of the detailed sample to a high
degree of accuracy. However, like any coarse graining
scheme, the pressure in the CG system is not equal to the
detailed system under same conditions of temperature and
volume.

We therefore propose to iteratively refine the nonbonded
potential further with a view to equalizing the pressure under
similar conditions of volume and temperature. To do this, the
nonbonded force field from the force matching technique is
used as a staring point for the iterative refinement, which
follows a simplex algorithm. In fact, assuming a two param-
eter nonbonded force field �akin to the LJ potential�, we are
able to accomplish the pressure equalization quite easily and
effectively. Thus a complete coarse graining of PS is accom-
plished at a high temperature much above Tg. All PS samples
thus coarse grained, when quenched and subsequently de-
formed at the same rates below Tg, are shown to yield very
similar stress-strain curves, which, in turn, approximates the
stres-strain response of the detailed PS sample quite well.
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